
Mathematical Foundations of Infinite-Dimensional Statistical

Models

Chapter 3.5 - 3.5.1

presented by Boyoung Kim

Seoul National University

December 21, 2018

1/21



Table of Contents

3.5 Metric Entropy Bounds for Suprema of Empirical Processes

3.5.1 Random Entropy Bounds via Randomisation

3.5.2 Bracketing I: An Expectation Bound

3.5.3 Bracketing II: An Exponential Bound for Empirical Processes

over Not Necessarily Bounded Classes of Functions

2/21



3.5 Metric Entropy Bounds for Suprema of Empirical Processes

I Good estimates for the mean of the supremum of an empirical process

E‖Pn − P‖F .

I This section and the next are devoted to this important subject.
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3.5.1 Random Entropy Bounds via Randomisation
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Random (pseudo)distance

I For any n ∈ N, let Pn denote the empirical measure corresponding to n

i.i.d. S-valued random variables Xi of law P.

I Then, for any measurable real functions f , g on S , we let en,2(f , g) denote

their L2(Pn) (pseudo)distance, that is,

e2
n,2(f , g) =

1
n

n∑
i=1

(f − g)2(Xi )
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Random or empirical metric entropies

I Given a class of measurable functions F on S , the empirical metric

entropies of F are defined as logN(F , en,2, τ) for any τ > 0 (recall from

Section 2.3).

I Often we will write N(F , L2(Pn), τ) for N(F , en,2, τ).

I Recall also the packing numbers D(T , d , τ) and their relationship with

covering numbers: for all τ > 0

N(T , d , τ) ≤ D(T , d , τ) ≤ N(T , d , τ/2) (3.164)
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Theorem 3.5.1

Theorem 3.5.1

In the preceding notation, assuming F countable and 0 ∈ F

E [
√
n‖Pn − P‖F ] ≤ 8

√
2E

[∫ √‖Pnf 2‖F

0

√
log2D(F , L2(Pn), τ)dτ

]
(3.165)

and, for all δ > 0,

E

[
√
n sup

f ,g∈F :Pn|f−g|2≤δ2
|(Pn − P)(f − g)|

]

≤ 2(16
√
2+ 2)E

[∫ δ

0

√
log2D(F , L2(Pn), τ)dτ

]
. (3.166)
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Theorem 3.5.1

Key idea of the proof

I By Theorem 3.1.21, we can randomise the empirical process by

Rademacher multipliers.

I The resulting process is sub-Gaussian conditionally on the variables Xi ,

and therefore, the metric entropy bounds in Section 2.3, in particular,

Theorem 2.3.7, apply to it.
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Measurable envelope (or envelope)

I If a measurable function F satisfies |f | ≤ F , for all f ∈ F , we say that F is

a measurable envelope (or envelope) of the class of functions F .

I As we see in the next section, there are many classes of functions F ,

denoted by Vapnik − Cervonenkis classes of functions, whose covering

numbers admit the bound

N(F , L2(Q), τ‖F‖L2(Q)) ≤
(
A

τ

)ν
, 0 < τ ≤ 1, (3.168)

for some A, ν positive and finite and for all probability measures Q on

(S ,S), where F is a measurable envelop of F .

I The next theorem will cover in particular the Vapnik − Cervonenkis case.

9/21



Koltchinskii-Pollard entropy

I For ease of notation, we set, for all 0 < δ <∞,

J(F ,F , δ) :=
∫ δ

0
sup
Q

√
N(F , L2(Q), τ‖F‖L2(Q))dτ, (3.169)

where the supremum is taken over all discrete probabilities with a finite

number of atoms and rational weights.

I The integrand of J is denoted as the Koltchinskii-Pollard entropy of F .
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Theorem 3.5.4

Theorem 3.5.4
Let F be a countable class of measurable functions with 0 ∈ F , and let F be a strictly

positive envelope for F . Assume that

J(F ,F , δ) <∞, for some (for all) δ > 0 (3.170)

where J is defined in (3.169). Given X1, ...,Xn iid S-valued rvs. with common law P

such that PF 2 <∞, let Pn be the corresponding empirical measure and

νn(f ) =
√
n(Pn − P)(f ), f ∈ F . Set U = max1≤i≤nF (Xi ), σ

2 = supf∈F Pf 2 and

δ = σ/‖F‖L2(P). Then, for all n ∈ N,

E‖νn‖F ≤ max

[
A1‖F‖L2(P)J(F ,F , δ),

A2‖U‖L2(P)J
2(F ,F , δ)

√
nδ2

]
, (3.171)

where we can take

A1 = 8
√

6 and A2 = 21535/2. (3.172)
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I The next theorem covers when the Koltchinskii-Pollard entropy admits as

upper bound a regularly varying function.

I The resulting bound for the expected value of the empirical process

becomes particularly simple and applies in many situations including the

Vapnik − Cervonenkis case (3.168)
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Theorem 3.5.6

Theorem 3.5.6
Let F be a countable class of functions with 0 ∈ F , let F be an envelope for F and

let H : [0,∞)→ [0,∞) be a function equal to log2 for 0 < x ≤ 1 and such that

(a) H(x) is nondecreasing for x > 0, and so is xH1/2(1/x) for 0 < x ≤ 1, and

(b) there exists CH finite such that
∫ c
0

√
H(1/x)dx ≤ CHcH

1/2(1/c) for all

0 < c ≤ 1. Assume that

sup
Q

log [2N(F , L2(Q), τ‖F‖L2(Q))] ≤ H(
1
τ
), for all τ > 0, (3.178)

where the supremum is taken over all discrete probability measures Q with a finite

number of atoms and with rational weights. Then

E‖νn‖F ≤ max
[
A1CHσ

√
H(‖F‖L2(P)/σ),A2C

2
H‖U‖L2(P)H(‖F‖L2(P)/σ)/

√
n
]
,

(3.179)

where A1 and A2 are the constants in (3.172).
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Corollary 3.5.7

The uniformly bounded case in the preceding two theorems

Corollary 3.5.7

Assume that the hypotheses of Theorem 3.5.6 are satisfied and that, moreover,

the functions in F are bounded in absolute value by a constant u. Then

E‖νn‖F ≤ 8
√
2CHσ

√
H(‖F‖L2(P)/σ) + 27C 2

HuH(‖F‖L2(P)/σ)/
√
n. (3.181)
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Corollary 3.5.8

Corollary 3.5.8

Suppose that supQN(F , L2(Q), ε‖F‖L2(Q)) ≤ (A/ε)ν , for 0 < ε < A, for some

ν ≥ 1 and A ≥ 2, the supremum extending over all Borel probability measures

Q, and let u = ‖F‖∞. Then

E‖νn‖F ≤ 8
√
2CAσ

√
2νlog

A‖F‖L2(Q)

σ
+ 28CA

1√
n
uνlog

A‖F‖L2(Q)

σ
, (3.184)

where CA = 2logA/(2logA− 1).
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I Perhaps the main observation regarding Theorem 3.5.6 is that if

nσ2/‖U‖2L2(P) & H(‖U‖L2(P)/σ),

then the bound (3.179) becomes, disregarding constants,

E

∥∥∥∥ n∑
i=1

(f (Xi )− Pf )

∥∥∥∥
F
.

√
nσ2H

(
2‖F‖L2(P)

σ

)
.
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Corollary 3.5.9

Corollary 3.5.9

Under the hypotheses of Theorem 3.5.6 and with the same notation, if, moreover, for

some λ ≥ 1,
nσ2

‖U‖2
L2(P)

≥
(
A2CH

λA1

)2
H(‖F‖L2(P)/σ), (3.185)

then

E

∥∥∥∥ n∑
i=1

(f (Xi )− Pf )

∥∥∥∥
F
≤ λA1CH

√√√√nσ2H

(
2‖F‖L2(P)

σ

)
≤
λ2A2

1
A2

nσ2

‖U‖L2(P)

(3.186)

where A1 and A2 are defined in (3.172). In the uniformly bounded case, if

nσ2

u
≥

27C2
H

(λ− 1)2
H(‖F‖L2(P)/σ),

then

E

∥∥∥∥ n∑
i=1

(f (Xi )− Pf )

∥∥∥∥
F
≤ 8
√

2λCH

√√√√nσ2H

(
2‖F‖L2(P)

σ

)
≤ λ2 nσ

2

u
.
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Definition 3.5.10

We need a definition just to describe how the function H must also be, up

to constants, a lower bound for the metric entropy of F .

Definition 3.5.10

A class of functions F that satisfies the hypotheses of Theorem 3.5.6 and such

that |f | ≤ 1 for all f ∈ F is full for H and P if, moreover, there exists c > 0

such that

logN(F , L2(P), σ/2) ≥ cH

(‖F‖L2(P)

σ

)
, (3.187)

for a measurable envelope F of F .
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Theorem 3.5.11

Theorem 3.5.11
Let F , H and F be as in Theorem 3.5.6 but further assume that the functions in F
take values in [−1, 1], let Pn, n ∈ N, be the empirical measure corresponding to

samples from a probability measure P on (S,S) and suppose as well that Pf = 0 for

all f ∈ F . Set DH =
∫ 1
0

√
H(1/τ)dτ . Assume that

nσ2 ≥
(
215 ∨ 222K2C2

H

)
H(6‖F‖2/σ) and nσ2 ≥ 32

√
2DH/(3e1/2), (3.188)

where K ≥ 1 is as in Theorem 3.2.9. Then

E

∥∥∥∥ n∑
i=1

f (Xi )

∥∥∥∥
F
≥
√
nσ

32K

√
logN(F , L2(P), σ/2). (3.189)

If, moreover, the class F is full for H,P and F with constant c, then

c

32K

√√√√nσ2H

(
2‖F‖L2(P)

σ

)
≤ E

∥∥∥∥ n∑
i=1

f (Xi )

∥∥∥∥
F
≤ 8
√

22

√√√√nσ2H

(
2‖F‖L2(P)

σ

)
(3.190)

(fullness is only required for the left-hand side inequality).
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