Mathematical Foundations of Infinite-Dimensional Statistical
Models
Chapter 3.5 -35.1

presented by Boyoung Kim

Seoul National University

December 21, 2018

1/21



Table of Contents

3.5 Metric Entropy Bounds for Suprema of Empirical Processes
3.5.1 Random Entropy Bounds via Randomisation
3.5.2 Bracketing |: An Expectation Bound

3.5.3 Bracketing II: An Exponential Bound for Empirical Processes

over Not Necessarily Bounded Classes of Functions

2/21



3.5 Metric Entropy Bounds for Suprema of Empirical Processes

» Good estimates for the mean of the supremum of an empirical process
E||P, — P|| 7.

» This section and the next are devoted to this important subject.

3/21



3.5.1 Random Entropy Bounds via Randomisation
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Random (pseudo)distance

» For any n € N, let P, denote the empirical measure corresponding to n

i.i.d. S-valued random variables X; of law P.

» Then, for any measurable real functions f, g on S, we let e,2(f, g) denote

their L2(P,) (pseudo)distance, that is,

2(f,8) = Z(f g)’
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Random or empirical metric entropies

» Given a class of measurable functions F on S, the empirical metric
entropies of F are defined as logN(F, e, 2, 7) for any 7 > 0 (recall from
Section 2.3).

> Often we will write N(F, L2(P,), ) for N(F, en2, 7).

» Recall also the packing numbers D(T,d, ) and their relationship with

covering numbers: for all 7 > 0

N(T,d,7) < D(T,d,7) < N(T,d,7/2) (3.164)
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Theorem 3.5.1

Theorem 3.5.1

In the preceding notation, assuming F countable and 0 € F

[/\/W

E[v/n||P, — P||#] < 8v2E /log2D(F, L2(Pn),r)d7} (3.165)
and, for all § > 0,

E

Vn sup I(Pn—P)(f—g)]

f,g€EF:Py|f—g|2<62

<2(16vV2 +2)E [/6 \/log2D(F, LZ(Pn)m)dr] : (3.166)
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Theorem 3.5.1

Key idea of the proof

» By Theorem 3.1.21, we can randomise the empirical process by
Rademacher multipliers.

» The resulting process is sub-Gaussian conditionally on the variables X;,
and therefore, the metric entropy bounds in Section 2.3, in particular,

Theorem 2.3.7, apply to it.
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Measurable envelope (or envelope)

» If a measurable function F satisfies |f| < F, for all f € F, we say that F is

a measurable envelope (or envelope) of the class of functions F.

> As we see in the next section, there are many classes of functions F,
denoted by Vapnik — Cervonenkis classes of functions, whose covering

numbers admit the bound
2 A\
N(F,L (Q),THFHLz(Q)) < (;) , 0<7<1, (3.168)

for some A, v positive and finite and for all probability measures Q on

(5,8), where F is a measurable envelop of F.

» The next theorem will cover in particular the Vapnik — Cervonenkis case.
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Koltchinskii-Pollard entropy

» For ease of notation, we set, for all 0 < § < oo,

9
J(F,F,0) ;:/ sup \/N(F. 12(Q). 7 |l (3.169)
0

where the supremum is taken over all discrete probabilities with a finite

number of atoms and rational weights.

» The integrand of J is denoted as the Koltchinskii-Pollard entropy of F.
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Theorem 3.5.4

Theorem 3.5.4
Let F be a countable class of measurable functions with 0 € F, and let F be a strictly

positive envelope for F. Assume that
J(F,F,é) < oo, for some (for all) § >0 (3.170)

where J is defined in (3.169). Given Xu, ..., Xy iid S-valued rvs. with common law P

such that PF? < oo, let P, be the corresponding empirical measure and

vn(f) = V/n(Pn — P)(f),f € F. Set U = maxi<;j<,F(X;), 0% = supsec x Pf2 and

6 =0o/||F|l;2(py- Then, for all n € N,

A2 || U]l 2(pyJ*(F, F, 6)
V/né?

Ellvallz < max | As][Fll2(pyJ(F, F,0), ; (3.171)

where we can take
A1 = 8v6 and Ay = 2%53%/2, (3.172)
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» The next theorem covers when the Koltchinskii-Pollard entropy admits as

upper bound a regularly varying function.

» The resulting bound for the expected value of the empirical process

becomes particularly simple and applies in many situations including the

Vapnik — Cervonenkis case (3.168)
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Theorem 3.5.6

Theorem 3.5.6

Let F be a countable class of functions with 0 € F, let F be an envelope for F and
let H : [0,00) — [0,00) be a function equal to log2 for 0 < x < 1 and such that

(a) H(x) is nondecreasing for x > 0, and so is xH'/2(1/x) for 0 < x < 1, and

(b) there exists Cy finite such that [ VH(1/x)dx < CycHY/2(1/c) for all

0 < ¢ < 1. Assume that

1
sup log[2N(F, L*(Q), 7[|Fll12(q))] < H(=), for all 7 >0, (3.178)
Q T

where the supremum is taken over all discrete probability measures Q with a finite

number of atoms and with rational weights. Then

Ellvallx < max [AyCro/H(IFll2(p)/), A2 CRIUll 2y HIF 2(p) /@) /7/]
(3.179)
where A1 and A are the constants in (3.172).
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Corollary 3.5.7

The uniformly bounded case in the preceding two theorems

Corollary 3.5.7

Assume that the hypotheses of Theorem 3.5.6 are satisfied and that, moreover,

the functions in F are bounded in absolute value by a constant u. Then

Ellvall7 < 8V2Cuoy/H(||F||i2(py/) + 2" CAuH(||F|li2(p)/0)//n.  (3.181)
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Corollary 3.5.8

Corollary 3.5.8

Suppose that supoN(F, L*(Q), €||F|l12(q)) < (A/€)”, for 0 < € < A, for some
v >1and A > 2, the supremum extending over all Borel probability measures

Q, and let u = ||F||oo. Then

AllF 1 AllF
Ellval|7 < 8\@CAU\/2u/ogM + 28CA7uulogw, (3.184)
n

where Ca = 2logA/(2logA — 1).
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» Perhaps the main observation regarding Theorem 3.5.6 is that if

no® /| UllEz(ey 2 H([Ulli2(p) /),

then the bound (3.179) becomes, disregarding constants,

e300 pr)| < froet (1),

i=1 F
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Corollary 3.5.9

Corollary 3.5.9

Under the hypotheses of Theorem 3.5.6 and with the same notation, if, moreover, for
some A > 1,

2
no > (AzCH

2
H(||F o), 3.185
i 2 (Gart) Pl /o) (3185)

then

(3.186)

i=1 g

2 F 252 2
(f(X pf)H < M1 Cy Jn 2H< [ LZ(P)> < A“AT no

Az ||Ull2p
where A1 and Az are defined in (3.172). In the uniformly bounded case, if
I70'2 27

T hoie 1)2H<HF||L2 p)/).

then

n

2|IF 2
E| ST(F(x) — Pf)H < 8\@>\CH\J no2H (””LZ(P)> <21
F

: o u
i=1
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Definition 3.5.10

We need a definition just to describe how the function H must also be, up

to constants, a lower bound for the metric entropy of F.

Definition 3.5.10
A class of functions F that satisfies the hypotheses of Theorem 3.5.6 and such
that |f| <1 for all f € F is full for H and P if, moreover, there exists ¢ > 0

such that

logN(F, L2(P),o/2) > cH (”F”ﬂ> , (3.187)

o

for a measurable envelope F of F.
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Theorem 3.5.11

Theorem 3.5.11
Let F, H and F be as in Theorem 3.5.6 but further assume that the functions in F
take values in [—1,1], let P,,n € N, be the empirical measure corresponding to

samples from a probability measure P on (S,S) and suppose as well that Pf =0 for
all f € F. Set Dy = fol v/ H(1/T)dT. Assume that

no? > (2'% v 222K2C?) H(6||F|2/o) and no? > 32v/2Dy/(3e*/?), (3.188)

where K > 1 is as in Theorem 3.2.9. Then

EH;:‘(X,—)HF > g\/logN(]:, 12(P),0/2). (3.189)

If, moreover, the class F is full for H, P and F with constant c, then

2||Fll2 u — 2||Fll2
32K\J"a ( o = ; X = n o

(3.190)

(fullness is only required for the left-hand side inequality).
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